Correction: Proper Interpretation of Dissolved Nitrous Oxide Isotopes, Production Pathways, and Emissions Requires a Modelling Approach

نویسندگان

  • Simon J. Thuss
  • Jason J. Venkiteswaran
  • Sherry L. Schiff
چکیده

Stable isotopes ([Formula: see text]15N and [Formula: see text]18O) of the greenhouse gas N2O provide information about the sources and processes leading to N2O production and emission from aquatic ecosystems to the atmosphere. In turn, this describes the fate of nitrogen in the aquatic environment since N2O is an obligate intermediate of denitrification and can be a by-product of nitrification. However, due to exchange with the atmosphere, the [Formula: see text] values at typical concentrations in aquatic ecosystems differ significantly from both the source of N2O and the N2O emitted to the atmosphere. A dynamic model, SIDNO, was developed to explore the relationship between the isotopic ratios of N2O, N2O source, and the emitted N2O. If the N2O production rate or isotopic ratios vary, then the N2O concentration and isotopic ratios may vary or be constant, not necessarily concomitantly, depending on the synchronicity of production rate and source isotopic ratios. Thus prima facie interpretation of patterns in dissolved N2O concentrations and isotopic ratios is difficult. The dynamic model may be used to correctly interpret diel field data and allows for the estimation of the gas exchange coefficient, N2O production rate, and the production-weighted [Formula: see text] values of the N2O source in aquatic ecosystems. Combining field data with these modelling efforts allows this critical piece of nitrogen cycling and N2O flux to the atmosphere to be assessed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling of nitrous oxide emissions from an A2/O process treating municipal wastewater

Nitrous oxide (N2O) is a greenhouse gas significantly contributing to the greenhouse effect and potentially generated during the biological nutrient removal in wastewater treatment plants (WWTPs). The 3 possible microbial pathways for the N2O production are the incomplete hydroxylamine oxidation, the nitrifier denitrification and the heterotrophic denitrification. The first two, both followed b...

متن کامل

Using stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems.

Nitrous oxide (N2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N2O, providing addit...

متن کامل

Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates.

The continuous increase of the greenhouse gas nitrous oxide (N2O) in the atmosphere due to increasing anthropogenic nitrogen input in agriculture has become a global concern. In recent years, identification of the microbial assemblages responsible for soil N2O production has substantially advanced with the development of molecular technologies and the discoveries of novel functional guilds and ...

متن کامل

Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors.

The emissions of nitrous oxide (N(2)O) and nitric oxide (NO) from biological nitrogen removal (BNR) operations via nitrification and denitrification is gaining increased prominence. While many factors relevant to the operation of denitrifying reactors can influence N(2)O and NO emissions from them, the role of different organic carbon sources on these emissions has not been systematically addre...

متن کامل

Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions

The low-oxygen regions of the world’s oceans have been shown to be major sources of nitrous oxide, a trace gas in the atmosphere that contributes to both greenhouse warming and the destruction of stratospheric ozone. Nitrous oxide can be produced as a by-product of nitrification or an intermediate of denitrification; low oxygen conditions enhance the yield of nitrous oxide from both pathways. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014